
Versión: 1.1 Última actualización: 16-02-2022

Ficha Técnica Prusament ASA por Prusa Polymers

Identificación

Nombre comercial	Prusamento ASA	
Nombre químico	Acrilonitrilo-estireno-acrilato	
Uso	Impresión 3D FDM/FFF	
Diámetro	1,75 ± 0,03 mm	
Fabricante	Prusa Polymers a.s., Praga, República Checa	

Parámetros de impresión recomendados

Temperatura del Nozzle [°C]	260 ± 10		
Temperature de la Base Calefactable [°C]	110 ± 5		
Velocidad de Impresión [mm/s]	hasta 200		
Velocidad del ventilador de enfriamiento [%]	30 (0-50*)		
Tipo de Base	chapa satinada; chapa lisa de PEI; chapa con recubrimiento de polvo*.		
Información adicional:	La altura del borde se ajusta a la altura de las piezas impresas. Un borde de 3 mm (o más alto) puede mejorar la adherencia de los bordes y esquinas de los objetos más grandes a la hoja de impresión.		

^{*} Depende de la geometría de los objetos impresos. Para mejorar los voladizos y puentes, establezca un 30% o más de enfriamiento en PrusaSlicer. Para impresiones más grandes sin puentes, el enfriamiento desactivado puede dar mejores resultados.

*** con una barra de pegamento

Propiedades típicas del material

	Valor típico	Método	
MFR [g/10 min](1)	20-24	ISO 1133	
MVR \ ~ [cm3/10 min](1)	19-23	ISO 1133	
Densidad [g/cm3]	1.07	ISO 1183	
Absorción de humedad en 24 horas [%](2)	0.16	Prusa Polymers	
Absorción de humedad en 7 días [%](2)	0.17	Prusa Polymers	
Temperatura de Deflexión Térmica (0.45 MPa) [°C]	93	ISO 75	
Temperatura de Deflexión Térmica (1.80 MPa) [°C]	86	ISO 75	
Límite de la Resistencia a la Tracción del Filamento [MPa]	40 ± 1	ISO 527	
Dureza - Escala D	78	Prusa Polymers	
Adhesión entre capas [MPa]	11 ± 1	Prusa Polymers	

(1) 10 kg; 220 °C

(2) 24 °C; humedad 22 %.

Propiedades mecánicas de las muestras de ensayo impresas en 3D(3)

Propiedad\Dirección de impresión	Horizontal	Vertical Eje X,Z	Método
Límite de la Resistencia a la Tracción [MPa]	42 ± 1	45 ± 2	ISO 527-1
Módulo de Tracción [GPa]	1.6 ± 0.1	1.7 ± 0.1	ISO 527-1
Elongación en el Límite de Elasticidad [%]	3.4 ± 0.2	3.8 ± 0.2	ISO 527-1
Resistencia a la flexión [MPa]	64 ± 1	69 ± 1	ISO 178
Módulo de Flexión [GPa]	2.0 ± 0.1	1.9 ± 0.1	ISO 178
Desviación a la resistencia a la flexión [mm]	9.0 ± 0.1	9.0 ± 1.0	ISO 178
Resistencia al Impacto Charpy [kJ/m2](4)	25 ± 3	38 ± 11	ISO 179-1
Resistencia al impacto Charpy Notched [kJ/m2](5)	12 ± 1	15 ± 3	ISO 179-1

(3) Se utilizó la impresora 3D original Prusa i3 MK3S para hacer las muestras de prueba. Se utilizó Slic3r Prusa Edition v2.0.0 para crear el código G con los siguientes ajustes:

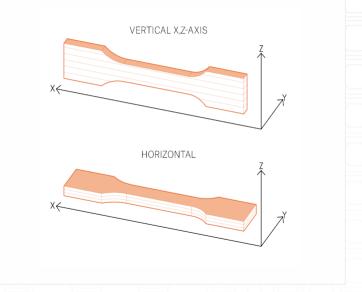
Prusament ASA;

Print Settings 0.20 mm FAST (capas 0.20 mm);

Solid Layers Top: 0, Bottom: 0;

Perímetros: 2;

Relleno 100 % rectilíneo;


Velocidad de impresión del relleno 200 mm/s;

Temperatura de la boquilla 265 °C en todas las capas;

Temperatura de la cama 110 °C en todas las capas;

Los demás parámetros están ajustados por defecto.

- (4) Charpy sin muesca Dirección de golpe de borde según ISO 179-1
- (5) Muesca Charpy Dirección de soplado en los bordes según ISO 179-1

Renuncia:

Los resultados presentados en esta hoja de datos son solo para su información y comparación. Los valores dependen significativamente de la configuración de impresión, las experiencias de los operadores y las condiciones del entorno. Todos deben considerar la idoneidad y las posibles consecuencias del uso de piezas impresas. Prusa Polymers no puede asumir ninguna responsabilidad por lesiones o pérdidas causadas por el uso del material de Prusa Polymers . Antes de usar material de Prusa Polymers, lea correctamente todos los detalles en la hoja de datos de seguridad (SDS) disponible.